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Abstract. The purpose of this note is to study the Maulik-Okounkov K−theoretic
stable basis for the Hilbert scheme of points on the plane, which depends on a “slope"
m ∈ R. When m = a

b is rational, we study the change of stable basis from slope m− ε to
m+ ε for small ε > 0, and conjecture that it is related to the Leclerc-Thibon conjugation
in the q−Fock space for Uqĝlb. This is part of a wide framework of connections involv-
ing derived categories of quantized Hilbert schemes, modules for rational Cherednik
algebras and Hecke algebras at roots of unity.

Résumé. Le but de cette note est d’étudier la base stable K−théoretique de Maulik-
Okounkov pour la schéma de Hilbert de points sur le plan, qui depend d’une pente
m ∈ R. Quand m = a

b est rationelle, nous étudions le changement de base stable de la
pente m− ε à m + ε pour un petit ε > 0, et conjecturons qu’il est lié à la conjugaison de
Leclerc-Thibon sur le q−éspace de Fock pour Uqĝlb. C’est une partie d’un cadre large
des connections entre les catégories dérivées des schémas de Hilbert quantiques, les
modules sur les algèbres de Cherednik rationelles, et les algèbres de Hecke aux racines
de l’unité.
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1 Introduction

Maulik and Okounkov [8, 7] developed a new paradigm for constructing interesting
bases (called stable bases) in the equivariant cohomology and K-theory of certain al-
gebraic varieties with torus actions. In this extended abstract, we present an explicit
conjectural description of the K–theoretic stable bases for Hilbn, the Hilbert scheme of n
points on C2.

The definition of the stable basis involves a choice of a Hamiltonian one parameter
subgroup, which is unique in the case of Hilbert schemes (strictly speaking, there are
two possible choices since one can invert the parameter, but we fix it without loss of
generality), and a choice of L ∈ Pic(Hilbn) ⊗ (R\Q). We abuse notation and refer
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to such L as “line bundles", though they are formal irrational multiples of actual line
bundles. Since Pic(Hilbn) has rank 1 with generator O(1), we write Lm for the line
bundle associated to m ∈ R\Q. The construction of [7] produces a basis:{

sm
λ

}
λ`n
∈ KC∗×C∗(Hilbn) ∀ m ∈ R\Q. (1.1)

For m = 0 the basis sm is expected to match the (plethystically transformed) Schur
polynomial basis, and for m = ∞ it coincides with the (modified) Macdonald polynomial
basis. Therefore, the stable basis for general m can be thought of as interpolating between
the bases of Schur and Macdonald polynomials. We are interested in “walls", i.e. those:

m ∈ R such that
{

sm+ε
λ

}
λ`n
6=
{

sm−ε
λ

}
λ`n

.

Throughout this paper, ε denotes a very small positive real number. There are only
discretely many walls for each fixed n, all expected to be of the form m = a

b with
0 < b ≤ n. The following conjecture prescribes how the stable basis changes upon
crossing these walls:

Conjecture 1.2. (see Conjecture 5.7 for the precise formulation): For m = a
b with gcd(a, b) = 1

the matrix taking
{

sm+ε
λ

}
λ`n

to
{

sm−ε
λ

}
λ`n

coincides with the Leclerc-Thibon involution [5,

6] for Uqĝlb, up to conjugation by the diagonal matrix that produces the renormalization (5.6).

We prove the above conjecture for b = 1, where the Leclerc-Thibon involution is trivial:

Proposition 1.3. We have sε
λ = s−ε

λ for all partitions λ ` n.

The proof of Proposition 1.3, as well as an idea to tackle Conjecture 1.2 in general, is
based on a principle that goes back to the work of Grojnowski and Nakajima, which
says that one should work with all Hilbn together, for all n ∈ N. Namely, define:
K =

⊕∞
n=0 KC∗×C∗(Hilbn). Feigin-Tsymbaliuk [2] and Schiffmann-Vasserot [13] have con-

structed an action of the spherical double affine Hecke algebra (DAHA) A of type GL∞
on K, albeit each in a different language. The algebra A has numerous q–Heisenberg
subalgebras A(m), parametrized by rational numbers m. In previous work ([12, 11]) the
second named author proved that the action of A(m), written in the stable basis sm, is
given by ribbon tableau formulas akin to those studied by Lascoux, Leclerc and Thibon
[4]. We conjecture that this is a special case of the following more general phenomenon.

Conjecture 1.4. (see Conjecture 6.3 for the precise formulation): For m = a
b with gcd(a, b) = 1

there exists an action Uqĝlb y K such that:

1. K is a level 1 vacuum module for Uqĝlb, isomorphic to the Fock space.
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2. The subalgebra A(m) embeds into Uqĝlb as the standard diagonal q–Heisenberg subalgebra,
and this embedding intertwines its action on K from [2, 12, 13] with this action.

3. The bases sm−ε and sm+ε are, respectively, the standard and costandard bases for this action,
up to renormalization.

We expect that the above “slope m action” of Uqĝlb on Fock space has interesting alge-
braic, geometric and combinatorial meaning, generalizing recent results about the “slope
m action” A(m) y K [1, 3, 10]. We support the conjectures with the following results.

Theorem 1.5. Suppose that gcd(a, b) = gcd(a′, b) = 1. Then the actions of A( a
b ) and of A( a′

b )

on K are conjugate to each other by the transition matrix between the bases s
a
b and s

a′
b .

Theorem 1.6. Conjectures 1.2 and 1.4 are equivalent.

Conjecture 1.2 was verified for n ≤ 6 and all rational slopes m = a
b by explicit computer

calculations. Note that by (5.5), it is sufficient to check slopes m ∈ [0, 1) and by Proposi-
tion 5.8 one can assume b ≤ n(n− 1). Therefore, one has finitely many slopes to check
for each n.
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2 Symmetric functions

Much of the present paper is concerned with the ring of symmetric functions in infinitely
many variables x1, x2, ...: Λ = Z[x1, x2, ...]Sym. There are a number of generating sets of
Λ, perhaps the most fundamental being the collection of monomial symmetric functions:
mλ = Sym

(
xλ1

1 xλ2
2 ...

)
, where λ = (λ1 ≥ λ2 ≥ ...) goes over all partitions of natural

numbers. Particular instances of monomial symmetric functions are the power sum
functions: pk = m(k) = xk

1 + xk
2 + ... and the elementary symmetric functions: ek =

m(1,1,...,1) = ∑i1<...<ik xi1 ...xik . As a ring, Λ is generated by the elementary symmetric
functions: Λ = Z[e1, e2, ...] and is generated by power sum functions upon tensoring with
Q: Λ̃ := Λ

⊗
Z Q = Q[p1, p2, ...]. Additive generators are always indexed by partitions

λ: Λ = Z[eλ]λ partition where eλ = eλ1eλ2 ... and: Λ̃ = Q[pλ]λ partition where pλ =
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pλ1 pλ2 ... A symmetric function is called integral if it lies in the image of Λ ↪→ Λ̃. A basis
of Λ̃ is called integral if it consists only of such functions.

There is a one-to-one correspondence between partitions and Young diagrams, the
latter being stacks of 1× 1 boxes placed in the corner of the first quadrant. For example,
the Young diagram:

1

q2

q2
2

q1

q1q2

q2
1

q2
1q2

q3
1

Figure 1

represents the partition (4, 3, 1), because it has 4 boxes on the first row, 3 boxes on the
second row, and 1 box on the third row. The monomials displayed in Figure 1 are called
the weights of the boxes they are in, and are defined by the formula: χ� = qx

1qy
2 where

(x, y) are the coordinates of the southwest corner of the box in question. We call the
integer: c� = x− y the content of the box, and note that c� is constant across diagonals.
Finally, to every box in a Young diagram we may associate its arm–length and leg–
length: a(�) and l(�) ∈ Z≥0 These numbers count the distance between the box � and
the right and top borders of the partition, respectively. For example, the box of weight
q2 in Figure 1 has a(�) = 2 and l(�) = 1. We will write:

cλ = ∑
�∈λ

c�, χλ = ∏
�∈λ

χ�. (2.1)

We write µ ≤ λ if the Young diagram of µ is completely contained in that of λ, and call
λ\µ a skew Young diagram. If such a skew diagram is a connected set of b boxes which
contains no 2× 2 squares, we call it a b–ribbon. Note that the contents of the boxes of a
b–ribbon R are consecutive integers. Set:

h(ribbon R) = max
�,�∈R

y(�)− y(�).

A skew diagram S is called a horizontal k–strip of b–ribbons if it can be tiled with k
such ribbons R1, ..., Rk in such a way that the the northwestern most box of Ri does not
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lie below a box of Rj for any 1 ≤ j 6= i ≤ k. Note that such a tiling of a skew diagram S
is always unique. We set h(strip S) = h(R1) + ... + h(Rk). The b–core of a partition λ is
defined as the minimal partition which can be obtained by removing b–ribbons from λ.
It is well known that the b–core does not depend on which set of ribbons we choose to
remove, as long as this set is maximal.

We will now extend our rings of constants, and work instead with:

Λq1,q2 = Λ
⊗
Z

Z[q±1
1 , q±1

2 ] = Z[q±1
1 , q±1

2 ][x1, x2, ...]Sym

Λ̃q1,q2 = Λ̃
⊗

Q

Q(q1, q2) = Q(q1, q2)[x1, x2, ...]Sym.

The parameters q1 and q2 are normally denoted by q and t−1 in Macdonald polynomial
theory. We choose to change the notation here, so as to not conflict with that of q−Fock
spaces. Since the Macdonald inner product respects the degree of symmetric polynomi-
als and the Hopf algebra structure of Λ̃q1,q2 , it is uniquely determined by the pairing of
pk with itself:

〈·, ·〉0 : Λ̃q1,q2

⊗
Q(q1,q2)

Λ̃q1,q2 −→ Q(q1, q2) (2.2)

〈pk, pk〉0 = k ·
1− qk

1

1− q−k
2

Macdonald polynomials {Pλ}λ partition are the only orthogonal basis of Λ̃q1,q2 :

〈Pλ, Pµ〉0 = 0 ∀ λ 6= µ

which is unitriangular in the basis of monomial symmetric functions:

Pλ = mλ + ∑
µCλ

mµcµ
λ (2.3)

for certain coefficients cµ
λ ∈ Q(q1, q2). In the above formula, recall that the dominance

ordering on partitions of the same size |µ| = |λ| is:

µE λ if µ1 + ... + µi ≤ λ1 + ... + λi ∀i. (2.4)

An element of Λ̃q1,q2 is called integral if it lies in the image of Λq1,q2 ↪→ Λ̃q1,q2 . Because
the coefficients cµ

λ of (2.3) are rational functions in general, Macdonald polynomials are
not integral. However, the following renormalization:

J̃λ = Pλ · q
−|λ|
2 ∏

�∈λ

(
ql(�)+1

2 − qa(�)
1

)
(2.5)

is integral. It is well-known that the pairing of J̃λ with itself is given by:

〈 J̃λ, J̃µ〉0 = δλ
µ · q

−|λ|
2 ∏

�∈λ

(
ql(�)+1

2 − qa(�)
1

) (
ql(�)

2 − qa(�)+1
1

)
. (2.6)
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3 Fock representation and global canonical bases

We recall the explicit construction of the action of the quantum affine algebra Uqĝlb on
the q–Fock space Λq, following Leclerc-Thibon [5, 6]. The standard basis in Λq will be
denoted by |λ〉, so we define:

Λq =
⊕

λ partition

Q(q) · |λ〉.

Consider partitions λ, µ such that the former is obtained from the latter by adding an
i–node, by which we mean a box � with content ≡ i modulo b. We call this box a
removable i–node for λ and an indent i–node for µ. Let Ii(µ) be the number of indent
i–nodes of µ, Ri(λ) the number of removable i–nodes of λ, I l

i (λ, µ) (respectively Rl
i(λ, µ))

the number of indent i–nodes (respectively of removable i–nodes) situated to the left
of �, and similarly, let Ir

i (λ, µ) and Rr
i (λ, µ)be the corresponding numbers of nodes

located on the right of �. Set: Ni(λ) = Ii(λ) − Ri(λ) for all partitions λ, as well as:
Nl

i (λ, µ) = I l
i (λ, µ)− Rl

i(λ, µ), Nr
i (λ, µ) = Ir

i (λ, µ)− Rr
i (λ, µ) for all pairs λ, µ such that

λ\µ consists of an i–node �. Then the following assignments:

ei|λ〉 =
λ/µ is

∑
an i–node

qNl
i (λ,µ)|µ〉, fi|µ〉 =

λ/µ is

∑
an i–node

qNr
i (λ,µ)|λ〉, (3.1)

qhi |λ〉 = qNi(λ)|λ〉, qD|λ〉 = qN0(λ)|λ〉 (3.2)

give rise to an action of Uqŝlb on the Fock space Λq. One wishes to enhance (3.1)–(3.2) to
an action of: Uqĝlb = Uqŝlb ⊗Uqĝl1 on the Fock space, where the q−Heisenberg algebra
is:

Uqĝl1 = Q(q) 〈..., B−2, B−1, B1, B2, ...〉
/
[Bk, Bl]− kδ0

k+l[b]qk

where [b]x = 1+ x+ ...+ xb−1. In other words, we must define an action of the generators
Bk on Fock space which commutes with the one prescribed by formulas (3.1)–(3.2). To
do so, let us consider the following alternative system of generators:

∞

∑
k=0

V±kzk = exp

(
∞

∑
k=1

B∓kzk

k

)
.

In [4], the authors introduced the following action Uqĝl1 y Λq and showed that it
commutes with the action of Uqŝlb defined in (3.1)–(3.2), thus giving rise to an action
Uqĝlb y Λq:

Vk|µ〉 = ∑
λ

(−q)−h(λ/µ)|λ〉, V−k|λ〉 = ∑
µ

(−q)−h(λ/µ)|µ〉 (3.3)
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where the sums go over all horizontal k–strips of b–ribbons λ/µ.
As observed by Leclerc and Thibon, there is a unique involution of the Fock space Λq

satisfying:

1. Semilinearity: a(q)x + b(q)y = a(q−1)x + b(q−1)y.

2. Identity on vacuum: |∅〉 = |∅〉.

3. Invariance under the creation operators: fiv = fiv, B−kv = B−kv.

Indeed, products of fi and B−k applied to the vacuum span the Fock space, and this
implies uniqueness. Note that Vkv = Vkv for all k > 0, because the operators Vk are
monomials in the generators B−k with constant coefficients. Define the matrix Ab(q) =
(aµ

λ(q)) by the equation
|λ〉 = ∑

µ

aµ
λ(q) · |µ〉. (3.4)

Clearly, Ab(q)Ab(q−1) = Id by the semilinearity property (1).

Theorem 3.5. ([5, 6]) The matrix Ab(q) has the following properties:

a) aµ
λ(q) ∈ Z[q, q−1].

b) aµ
λ(q) = 0 unless |λ| = |µ|, µE λ and λ, µ have the same b–core.

c) aλ
λ(q) = 1.

d) aµ
λ(q) = aλ′

µ′(q).

We will also encounter the costandard basis |λ〉 of Λq. By definition, Ab(q) is the
transition matrix between the standard and the costandard bases. Furthermore, the ac-
tion of the creation operators in the costandard basis is given by the following equations:

fi|µ〉 = fi|µ〉 = ∑
λ

qNr
i (λ,µ)|λ〉 = ∑

λ

q−Nr
i (λ,µ)|λ〉, (3.6)

and similarly:
Vk|µ〉 = ∑

λ

(−q)h(λ\µ)|λ〉, (3.7)

where the sums over λ and µ are the same as in (3.1) and (3.3).
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4 Hilbert schemes

We consider the Hilbert scheme Hilbn of n points in the plane. This is a smooth quasi-
projective variety of dimension 2n. It is endowed with a torus action: T = C∗q × C∗t y
Hilbn. In the above formula, q and t are equivariant parameters, namely the standard
coordinates on rank 1 tori. We will often denote q1 = qt and q2 = qt−1 and think of these
monomials as the torus characters acting on the coordinate lines of C2. Fixed points of
the Hilbert scheme with respect to the torus action are monomial ideals:

Iλ = (xλ1−1, xλ2−1y, xλ3−2y2, ...) ∈ Hilbn (4.1)

for any partition λ = (λ1 ≥ λ2 ≥ λ3 ≥ ...). The torus character in the tangent space to
Hilbn at the fixed point Iλ is given by the well-known formula:

TλHilbn = ∑
�∈λ

(
qa(�)

1 q−l(�)−1
2 + q−a(�)−1

1 ql(�)
2

)
. (4.2)

We will work with the equivariant K−theory group: K =
⊕∞

n=0 Kq,t(Hilbn). Important
elements of K are the skyscraper sheaves at the torus fixed points (4.1), which we denote
by the same letter as the fixed point itself: [ Ĩλ] ∈ K. Recall the equivariant localization
formula, which expresses any class f ∈ K in terms of its restrictions to torus fixed points:

f = ∑
λ`n

f |λ · [ Ĩλ]

[TλHilbn]
(4.3)

where in the denominator we write [x] = 1− x−1 and extend this notation additively:
[x + y] = [x] · [y]. Because of the presence of denominators, the equality (4.3) holds in
the localized K–theory group: K̃ = K

⊗
Z[q±1

1 ,q±1
2 ] Q(q1, q2) In this localization, we may

renormalize the classes of fixed points:

[Iλ] =
[ Ĩλ]

[TλHilbn]
∈ K̃.

The restriction of a class to a fixed point is precisely its coefficient when expanded in the
basis [Iλ]: f = ∑λ`n f |λ · [Iλ].

Haiman showed one can identify K ∼= Λq1,q2 such that the classes of fixed points cor-

respond to modified Macdonald polynomials H̃λ: [ Ĩλ]↔ H̃λ where H̃λ[X] = J̃λ

[
X

1−q−1
2

]
is the image of (2.5) under the standard plethysm. The Bergeron–Garsia operator ∇ is
defined to be diagonal in the basis of modified Macdonald polynomials:

∇ : Λq1,q2 −→ Λq1,q2 , H̃λ 7→ H̃λ · χλ

where χλ was defined in (2.1). If we observe that χλ is the torus weight of the restriction
of the line bundle O(1) to the fixed point λ, then the operator ∇ corresponds to the
operator of multiplication by O(1).
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5 Stable bases

In [8], Maulik and Okounkov defined the stable basis for the cohomology of a wide
class of symplectic resolutions X. The K−theoretic version of their construction has not
yet been published, but the interested reader can read about it in [10, 11]. We will review
their particular construction in the case at hand X = Hilbn:

∀ m ∈ R\Q  an integral basis {sm
λ }λ`n ∈ KT(Hilbn) (5.1)

which is triangular in terms of renormalized fixed points:

sm
λ = ∑

µEλ

γ
µ
λ[Iµ] where γλ

λ = ∏
�∈λ

(
ql(�)

2 − qa(�)+1
1

)
(5.2)

and the coefficients γ
µ
λ ∈ Z[q±1, t±1] have the property:

min deg γ
µ
λ(q, t) ≥ −n(µ) + m · (cµ − cλ) (5.3)

max deg γ
µ
λ(q, t) ≤ n(µ′) + |µ|+ m · (cµ − cλ). (5.4)

Recall that n(λ) = ∑�∈λ l(�). Here and throughout this paper, “min deg" and “max
deg" refer to the minimal and maximal degrees of a Laurent polynomial in the variable
t. Formulas (5.3)–(5.4) are arranged so that when λ = µ, the leading coefficient of
(5.2) forces the two inequalities to be equalities. Maulik–Okounkov claim that for any
m ∈ R\Q, there is a unique integral basis with properties (5.2), (5.3), (5.4). Moreover, the
basis is unchanged under small perturbations of m. Note that uniqueness implies:

sm+1
λ =

∇sm
λ

χλ
. (5.5)

The existence and uniqueness of (5.1) also holds for m ∈ Q, but we must require
either (5.3) or (5.4) to be a strict inequality. Fix a rational slope m ∈ Q. Since the stable
basis is locally constant on a small punctured neighborhood of m, we have the two
different bases:

{sm−ε
λ }λ partition ⊂ Λq1,q2 ⊃ {sm+ε

λ }λ partition.

Our main object of study will be the transition matrix between the above stable bases:

A : Λq1,q2 −→ Λq1,q2 , A
(
sm+ε

λ

)
= sm−ε

λ

for all partitions λ. When m = a
b with gcd(a, b) = 1, we will relate the matrix A with the

representation theory of Uqĝlb, as in Section 3. Specifically, we consider the renormalized
stable basis given by:

s̃m±ε
λ = sm±ε

λ · om
λ ·

λ\core λ =

∏
= R1t...tRk

k

∏
i=1

b−1

∏
j=1

q#i
j (5.6)
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where the product is taken over any maximal set of b−ribbons contained in λ, and:

#i
j =

{
mj− bmjc if the j− th step in the ribbon Ri is to the right
dmje −mj if the j− th step in the ribbon Ri is down.

Conjecture 5.7. In the renormalized stable basis, we have:

s̃m−ε
λ = A

(
s̃m+ε

λ

)
= ∑

µ

aµ
λ(q) · s̃

m+ε
µ

where (aµ
λ(q)) is the matrix of the Leclerc-Thibon involution (3.4).

It is clear from the definition that the stable bases are locally constant in the parameter
m. More precisely, we say that the stable basis for Hilbn has a wall at m if sm−ε 6= sm+ε

for some small ε > 0.

Proposition 5.8. If m = a
b with gcd(a, b) = 1 is a wall for Hilbn, then the following statements

hold:

a) b ≤ n(n− 1).

b) The transition matrix between sm+ε and sm−ε is block-triangular. Two partitions λ and µ

belong to the same block if m · (cλ − cµ) ∈ Z.

Proof. Since |cλ|, |cµ| ≤ n(n−1)
2 , we conclude that:

b ≤ cλ − cµ ≤ n(n− 1).

which implies (a). Part (b) is immediate from equations (5.3) and (5.4).

Conjecture 5.7 implies stronger constraints on the set of walls than Proposition 5.8 does,
and it also refines the blocks in the the wall-crossing matrices:

Proposition 5.9. Assume that Conjecture 5.7 holds and m = a
b is a wall for Hilbn, gcd(a, b) =

1. Then the following statements hold:

a) b ≤ n.

b) The transition matrix between sm+ε and sm−ε is block-triangular. Two partitions λ and µ

belong to the same block if they have the same b–core.

Proof. Part (b) follows from Theorem 3.5 (b). Suppose for the purpose of contradiction
that b > n. Then every partition of n is its own b–core, so all blocks are of size 1. Since the
transition matrix should have 1’s on the diagonal, it is an identity matrix, and therefore
m = a

b is not a wall.
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6 Heisenberg actions

To prove Conjecture 5.7, for each m = a
b one needs to present an action of Uqĝlb on

the Fock space such that the matrices of the generators in the renormalized stable bases
s̃m−ε and s̃m+ε have particularly nice form. In this section, we present such an action
of the diagonal Heisenberg subalgebra: Uqĝl1 ⊂ Uqĝlb following [12]. We will use a
remarkable algebra A over the field Q(q, t), which is known by many names: the double
shuffle algebra, the Hall algebra of an elliptic curve, the doubly-deformed W1+∞–algebra,
the spherical double affine Hecke algebra (DAHA) of type GL∞. See [13, 9] for various
isomorphisms between different presentations of A. It is known that the group SL(2, Z)
acts on A by automorphisms. Furthermore, there is a natural q–Heisenberg subalgebra
of A, which in the DAHA presentation is generated by symmetric polynomials in Xi
and their conjugates. By applying automorphisms γ ∈ SL(2, Z) to this subalgebra, we
get new q–Heisenberg subalgebras:

A ⊃ A(m) = Q(q, t)
〈

..., B(m)
−2 , B(m)

−1 , B(m)
1 , B(m)

2 , ...
〉

labeled by rational numbers m = a/b, where γ(1, 0) = (b, a). We will call A(m) the slope
m subalgebra in A. The following results relate A(m) to slope m stable bases.

Theorem 6.1. ([2, 13, 10]) There is an action of A on Λq1,q2 , where q1 = qt and q2 = qt−1.

Theorem 6.2. ([12]) The action of the slope m subalgebra A(m) in the renormalized stable basis
s̃m+ε is given by equations (3.3).

Conjecture 5.7 can be now reformulated in the following way, which is more interesting
for geometric applications.

Conjecture 6.3. Given m = a
b with gcd(a, b) = 1, there is an action of the quantum affine

algebra Uqŝlb on the Fock space, satisfying the following conditions:

a) It commutes with the action of the slope m Heisenberg subalgebra A(m).

b) The action of the creation operators fi in the renormalized stable basis s̃m+ε is given by
(3.6).

c) The action of the creation operators fi in the renormalized stable basis s̃m−ε is given by
(3.1).

Theorem 6.4. Conjectures 5.7 and 6.3 are equivalent.

Based on the extensive computer experiments, we formulate the following conjecture.

Conjecture 6.5. For all positive slopes m, the stable basis is Schur-positive:

sm
λ = ∑

µ

km
λ,µsµ, km

λ,µ ∈N[[q, t]].
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